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Abstract
Recently an acoustic destabilizing pressure was predicted, which could be shown
experimentally via a dewetting pattern in thin polymer films. The wavelength λ of the fastest
growing mode is a signature of the acting forces. Even in cases with stabilizing van der Waals
forces, films became unstable. The present paper also considers thermally excited acoustic
waves confined in a thin liquid film of thickness d . A new concept is developed to calculate the
acoustic pressure for different boundary conditions: the free-standing film, the film rigid at one
surface and the film deposited on a substrate, liquid or solid. For characteristic examples the
calculation is carried out numerically. The results for the limiting cases are simple. The acoustic
pressure of the free-standing film grows monotonically with d up to a level strongly depending
on the temperature, it cannot destabilize the film. The acoustic pressure of the film rigid at one
surface rapidly grows with d to a maximum and then decreases monotonically to the same level
as for the free-standing film. On the right side of the maximum the film is unstable and λ grows
quadratically with d , similar to the case of a destabilizing van der Waals pressure. For a film
deposited on a substrate the acoustic pressure comes to a smaller level directly, depending on the
excess sound velocity in the substrate: generally it yields a rather linear dependence of λ on d .

1. Introduction

Coatings and their stability have an enormous technological
relevance. Lubrication layers, adhesives, protective coatings,
membranes and foams are stabilized by the surface tension σ

and are further stabilized or destabilized by forces described by
their effective interfacial potential �(d), where d is the layer
thickness [1]. For very small d there act the prominent van der
Waals forces [2, 3]. They exert a pressure

PvdW(d) = �′
vdW = A/(6πd3). (1)

For a positive Hamaker constant A it destabilizes the film:
capillary surface waves are amplified, leading to spinodal
dewetting. A linear stability analysis yields the wavelength of
the mode with the fastest growing amplitude:

λ(d) =
√

−8π2σ/�′′(d). (2)

λ is a signature of the interface potential and can be used
to determine the forces. For example, from the preferred

wavelength λ, Seemann et al could find precisely the Hamaker
constant A for a PS film on an SiO substrate [1]. Otherwise the
Hamaker constant is calculated by the refractive indices and
dielectric constants of the materials in the layered system. It
is positive (A > 0) if the refractive indices of the two media
bounding the film (air and substrate) are lower as compared to
the film [4, 5].

There may act further forces, e.g. electrostatic forces and
temperature gradients, and also, as proposed by Schäffer and
Steiner [6], the pressure of thermally excited acoustic waves
confined in the film. Excluding all other known sources the
experiments of Morariu et al [4, 7] showed a dewetting pattern
even for stabilizing van der Waals forces (A < 0). The basic
formula for the acoustic pressure used in [4, 7, 8] is

Pac(d) = πkBT/(18d3). (3)

It was derived by Schäffer et al [6] using the same energy kBT
for all states and the Debye approximation for a free-standing
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film:

kBT

3

[∫ νD,a

0
dna −

∫ νD,f

νc

dnf

]
= P0 + πkBT

18d3
, (4)

with the density of states for sound waves

dn = 4πν2dν

u3
, (5)

and the lower cutoff frequency (uf being the sound velocity in
the film)

νc = uf/(2d). (6)

Some questions remain: is Pac destabilizing (�′′
ac < 0) in all

cases, and how does it depend on the properties of the film, the
substrate and the boundary conditions (see the discussion with
Steiner [7])? One of the results of the experiments in [4] is that
the influence of Pac vanishes if the film and the substrate are
acoustically very similar.

The density of states, equation (5), is an approximation
of lower order, which does not reflect the acoustic boundary
conditions [9]. Following Landau and Lifshitz [10] and
Larraza [11] the radiation pressure on a perfectly reflecting
surface of a sound wave (with the mean energy density Ē) is
given by

P = 2Ē cos2 �, (7)

where � is the angle of incidence on the surface. The
introduction of a limiting frequency ωD = 2πνD keeps the
pressure bounded, if one assumes the same energy kBT for all
states. Using the precise number of confined states below ωD

thus leads to discontinuities of the function �′′(d) at d/d0 =
1, 2, . . . , where d0 = uf/2νD. But considering the energy
distribution

h̄ω/(exp(h̄ω/kBT ) − 1) (8)

instead of kBT for each state, the introduction of νD is useless
and one obtains a finite, smooth curve for the pressure Pac(d).

We proceed in this paper in section 2 by calculating
the allowed acoustic states (dispersion curves) for different
boundary conditions. Pac will be derived by summing up
the contributions of all confined states including the factor
2 cos2 � and the energy distribution (8). Section 3 is devoted
to the results and discussion. A summary is given in section 4.

2. The pressure from the confined states in a thin
liquid film

For a system of flat liquid layers in each layer plane
monochromatic sound waves are described by their potential
ϕ = A · exp(−iωt + ikr), which is a solution of the wave
equation u2ϕ̈ − 
ϕ = 0, with the sound velocity u [10]. The
variation of the pressure and the particle velocity of the sound
wave is given by

p = −ρϕ̇, v = gradϕ. (9)

With the normal in the x3 direction one has the boundary
conditions for individual layers: (i) at free surfaces the normal
component of the stress tensor vanishes, i.e. p = −ρϕ̇ = 0,

(a)

(f)

(s)

x1

x3

Figure 1. Boundary conditions for a liquid film (f) parallel to the
x1, x2 plane with one surface bounded by air (a). (I) The other
surface is free too. (II) The other surface is fixed. (III) The film is
deposited on a liquid substrate (s). (IV) The film is deposited on a
solid substrate (s).

(ii) at liquid/liquid interfaces the normal stress (−ρϕ̇) and
the normal component of the particle velocity (ϕ,3) should be
continuous, (iii) the substrate is regarded as a half-space, so
ϕ(x3) should remain finite and (iv) at rigid surfaces the normal
component of the particle velocity vanishes, v3 = ϕ,3 = 0.
In each layer (film or substrate, see figure 1) the boundary
conditions can be fulfilled by superposition of bulk waves. In
the film (l = f) and the substrate (l = s)

ϕl = (Al sin(k⊥l x3) + Bl cos(k⊥l x3)) · exp(−iωt + ik‖r),

k⊥l =
√

ω2/u2
l − k2

‖.
(10)

The allowed film/substrate states are characterized by their
frequency ω, by the wavevector component k‖ ≡ K parallel
to the surfaces and by the plane of propagation [9, 10, 12].

From the boundary conditions we get the equations for the
coefficients:

(1) At the upper free surface of the liquid film (ϕ̇ = 0):

Af sin(k⊥fd/2) + Bf cos(k⊥fd/2) = 0. (11)

(2) At the lower surface of the liquid film: if the film is free
here too (ϕ̇ = 0):

− Af sin(k⊥fd/2) + Bf cos(k⊥fd/2) = 0. (12)

If this surface of the film is rigid (ϕ,3 = 0):

Af cos(k⊥fd/2) + Bf sin(k⊥fd/2) = 0. (13)

If the film is deposited on a liquid substrate (ρϕ̇) and (ϕ,3)
should be continuous:

ρf(−Af sin(k⊥fd/2) + Bf cos(k⊥fd/2)) = ρs Bs, (14)

k⊥f · (Af cos(k⊥fd/2) + Bf sin(k⊥fd/2)) = k⊥s As, (15)

(for the substrate this surface is taken as x3 = 0).
(3) For x3 → −∞, ϕs should remain finite. Confined states

cannot propagate in the substrate, therefore we require
ω/k‖ < us, so that (k⊥s ≡ i · as) is imaginary and the
boundary condition yields

As + i · Bs = 0. (16)
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Figure 2. Dispersion curves of the confined modes in a liquid film
(d, uf) with one surface free and different boundary conditions for
the other surface. (I) The other surface is free too, grey hyperbola.
(II) The other surface is rigid, black hyperbola. (III) The film is
deposited on a liquid substrate half-space, solid coloured curves.
(IV) The film is deposited on a solid substrate half-space, dotted
coloured curves. R = ρs/ρf = 1.97 (green) and R = 0.197 (blue).

Figure 3. Acoustic pressure for the energy kBT of each state.
(I) Free-standing film, solid grey curve. (II) One surface of the film is
free and the other rigid, solid black curve.

2.1. Free-standing liquid film (I)

At both surfaces (x3 = ±d/2) the normal component
of the stress tensor, i.e. p = −ρfϕ̇f, vanishes. The
system of equations for Af, Bf is solvable if its determinant
sin(k⊥fd) vanishes: this yields the dispersion curves (thick
grey hyperbola in figure 2)

ω2/u2
f − k2

‖ = (nπ/d)2 = k2
⊥, k⊥ ≡ k⊥f

n = 0, 1, 2, . . . (17)

Figure 4. The pressure of the confined sound waves in a liquid film
versus film thickness d (with energy distribution (8)). One surface of
the film is free. (I) The other surface is free too, solid grey curve.
(II) The other surface is rigid, solid black curve. (III) The film is
deposited on a liquid substrate, solid coloured curves. (IV) The film
is deposited on a solid substrate, dashed coloured curves.
uf = 2.7 km s−1, us = 8.4 km s−1, usL = 8.4 km s−1, usT =
5.8 km s−1, ρf = 1.2g cm−3, ρs = 2.3 g cm−3 · F , F = 10
(magenta), F = 1 (green), F = 0.3 (brown) and F = 0.1 (blue).

Each point on these curves represents one state for a fixed
plane of propagation. We can count the number of states in
the volume V = L1 L2d , with frequencies below ωD (L1, L2

being the lengths of the film)

AI(ωD) =
NI∑

n=0

L1 L2

4π2

∫ KIn

0
2π K dK . (18)

The number of curves beginning below νD is given by

NI = �νD/νc	, νc = uf/2d, (19)

where �· · ·	 denotes the maximum natural number below. The
intersections of the dispersion curves with ω = ωD are

K 2
In = ω2

D

u2
f

−
(

nπ

d

)2

, n = 0, 1, . . . , NI. (20)

To calculate the inside acoustic pressure on the free surface of
the film one should multiply each state with its energy density
and with

2 cos2 � = 2(k⊥/k)2, (21)

where � is the angle of incidence on the surface [10]. If
one assumes the energy kBT for each state [6] one obtains the
pressure, which the acoustic states exert on the free surface of
the film (thick grey curve in figure 3):

PI = 2kBT

V

NI∑

n=0

L1 L2

4π2

∫ KI,n

0
cos2 �2π K dK . (22)
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With the new variable Z 2 = k2/k2
⊥ = 1 + K 2(d/nπ)2 we get

PI = πkBT

d3

NI∑

n=0

n2
∫ d/d0n

1

dZ

Z

= πkBT

d3

NI∑

n=1

n2 log
d

nd0
−→ kBTπ

9d3
0

, d → ∞ (23)

where d0 = uf/2νD, NI = �d/d0	. (24)

The discontinuities of �′′
I (d) = P ′

I (d) at d/d0 = 1, 2, . . . are a
result of the limited frequency νD; it keeps the pressure on the
surface finite for equal energy kBT of each state. Introducing
the energy distribution (8) instead of kBT for each state, the
pressure becomes

PI = π

d3

NI∑

n=0

n2
∫ d/nd0

1

dZ

Z
· h̄ω

eh̄ω/kB T − 1
, (25)

where ω = ufk = ufk⊥Z . With x = h̄ω/kBT one obtains

PI = πkBT

d3

NI=�νD/νC	∑

n=0

n2
∫ xD

xIn

dx

ex − 1
, (26)

xD = h̄ωD/kBT, xIn = nd1/d with the unit

d1 = huf/2kBT . (27)

(For example, d1 = 0.16 nm if uf = 2000 m s−1 and T =
300 K.) We calculate numerically the expression (26) for
increasing νD until, for a given d interval, the pressure curve
PI(d) gets sufficiently smooth (thick grey curve in figure 4).

2.2. Liquid film with one surface free and the other rigid (II)

The boundary condition at the free surface (x3 = d/2) remains
ϕ̇f = 0. At the rigid surface (x3 = −d/2) the normal
component of the velocity vanishes, v3 = ϕf,3 = 0. One
obtains the dispersion curves (thick black hyperbola in figure 2)

ω2/u2
f − k2

‖ = ((n − 0.5)π/d)2 = k2
⊥, n = 1, 2, . . . .

(28)
The calculation of the acoustic pressure on the free surface of
the film can be done in the same manner as for the free-standing
film, but with the dispersion curves equation (28) instead of
equation (17). The intersections of the dispersion curves with
ω = ωD are given by

K 2
IIn = ω2

D

u2
f

−
(

(n − 0.5)π

d

)2

, n = 1, 2, . . . ,

NII = �d/d0 + 0.5	 = �νD/νC + 0.5	.
(29)

The energy kBT for each state [6] leads to the acoustic pressure
for the boundary condition (II) (thick black curve in figure 3):

PII(d) = 2kBT

V

NII∑

n=1

L1 L2

4π2

∫ KIIn

0
cos2 � · 2π K dK . (30)

With the new variable Z 2 = k2/k2
⊥ = 1 + K 2(d/(n − 0.5)π)2

one obtains

PII(d) = πkBT

d3

NII∑

n=1

(n − 0.5)2

×
∫ d/d0(n−0.5)

1

dZ

Z
−→ kBT π

9d3
0

d → ∞. (31)

With increasing d , PII(d) approaches at the same limit as
PI(d). The energy distribution (8), yields the smooth, thick
black curve in figure 4:

PII(d) = πkBT

d3

�νD/νC+0.5	∑

n=1

(n − 0.5)2
∫ xD

xIIn

dx

ex − 1
,

xIIn = (n − 0.5)d1/d.

(32)

2.3. Liquid film on a liquid substrate (III)

To investigate the influence of a liquid substrate, with the
sound velocity us > uf, we consider the states which fulfil all
boundary conditions of the film and the substrate. At the free
surface of the film (x3 = d/2), the normal stress should vanish
(ρfϕ̇f = 0). At the interface film/substrate, (x3 = −d/2)
the normal stress and the normal component of the particle
velocity should be continuous: ρfϕ̇f = ρsϕ̇s and ϕf,3 = ϕs,3.
For the substrate half-space, ϕs(x3) should remain finite for
(x3 → −∞).

The dispersion curves (solid coloured curves in figure 2)
describe the confined states in the investigated liquid film
(d, uf) on a liquid substrate half-space:

ρf · tan(k⊥d)/k⊥ + ρs

/√
K 2 − ω2/u2

s = 0,

k⊥ ≡ k⊥f. (33)

We calculate the inside pressure PIII(d) on the free surface of
the film from these dispersion curves ωIIIn(K ). With the energy
distribution (8) we obtain

PIII(d) = 1

πd

NIII∑

n=1

∫ KIIIn

Ksn

cos2 � · K dK
h̄ω

eh̄ω/kB T − 1
, (34)

NIII = �WνD/νC + 0.5	, W =
√

1 − u2
f /u2

s ,

Ksn = uf

us
· (n − 0.5)π

Wd
. (35)

KIIIn being the intersections of the dispersion curves with
ω = ωD. Using the dispersion curves ωIIn instead of ωIIIn for
ω/K < us, we find the approximation W 3 PII(Wd). The exact
dispersion curves ωIIIn(K ) with x = h̄ω/kBT and xIIIn =
(n − 0.5)d1/Wd yield

PIII(d) = kBT

πd3

NIII∑

n=1

∫ xD

xIIIn

k2
⊥d2

(
1−u2

f ·
k⊥
ω

dk⊥
dω

)
dx

ex − 1
. (36)

The numerical calculation for sufficiently large νD and
different elastic properties yields the solid coloured curves in
figure 4.

2.4. Liquid film on a solid substrate (IV)

For a solid we start with the equations of linear elasticity.
To a given frequency ω and direction of propagation k in an
unbounded isotropic body there are three plane wave solutions
for the displacements, two transverse (T) and one longitudinal
(L) wave ( j = T, L):

w = wj · exp(−iωt + ikr). (37)

4
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In a system of solid layers with the normal in the x3 direction
one has the following boundary conditions: (i) vanishing
stresses (σi3) at the free surfaces; (ii) continuous (σi3) and (wi)

at the interfaces of adjacent layers; (iii) finite displacements if
the last layer is the half-space; (iv) vanishing displacements
(wi) at fixed surfaces. The boundary conditions of the layer
system can be fulfilled by a superposition of the sound waves
in each layer with a common plane of propagation, frequency ω

and wavevector component k‖ ≡ K parallel to the layers [12].
Now we consider a liquid film with vanishing shear

modulus. A linear combination of longitudinal waves
propagating in the (x1, x3) plane with (ω, K ) is given by
(

w1

w3

)

f

= exp(−iωt + iK x1)

·
(

CL K SL/αL

iαLSL/K −iCL

) (
A
B

)
,

Sj = sin(α j x3), C j = cos(α j x3) j = T, L

αL =
√

ω2/u2
f − K 2. (38)

In the substrate we start with a linear combination of
transverse and longitudinal waves also polarized in the plane
of propagation:
(

w1

w3

)

s

= exp(−iωt + iK x1)

·
((

C ′
L K S′

L/α′
L

iα′
LS′

L/K −iC ′
L

)(
A′
B ′

)

+
(

α′
TS′

T/K −C ′
T

iC ′
T iK S′

T/α′
T

)(
C ′
D′

))
,

with α′
j =

√
ω2/u2

s j − K 2 and

a′
j ≡ iα′

j , j = T, L . (39)

In the region (ω/K < us j ) the modes cannot propagate in
the solid substrate half-space; they are confined in the liquid
film. All boundary conditions, without the continuity of w1

across the interface, can be fulfilled for (ω, K ) which solve the
dispersion equation

ρf · tan(αLd)/αL + ρs · ((1 − κ)2/a′
L − a′

Tκ2/K 2) = 0,

κ = 2K 2u2
sT/ω2. (40)

The dispersion curves ωIVn(K ) yield the pressure of the
confined modes (dashed curves in figure 4):

PIV(d) = kBT

πd3

NIV∑

n=0

∫ xD

xIVn

k2
⊥d2

(
1 − u2

f · k⊥
ω

dk⊥
dω

)

× dx

ex − 1
, (41)

xIVn being the first point of the nth dispersion curve at ω/K =
usT. The modes from the region (usT < ω/K < usL) are not
completely confined in the liquid film. They lose energy into
the substrate.

3. Results and discussion

The pressure Pac(d) of confined thermally excited sound waves
on the surfaces of a thin liquid film depends on the boundary

Table 1. d = dIII at the maximum of PIII and the coefficient L III.

U = us/uf = 3.14 U = 1.57

R = ρs/ρf dIII/d1 L III dIII/d1 L III

0.079 0.79 0.95 0.50 0.644
0.197 0.66 0.85 0.43 0.645
0.395 0.43 0.79 0.40 0.670
1.975 0.26 0.87 0.30 0.879
9.872 0.20 1.46 0.26 1.564

19.75 0.20 1.94 0.26 2.151
49.36 0.20 >3.04 0.23 >3.213

conditions. From the related dispersion curves the pressure is
calculated numerically for characteristic examples. If P ′

ac(d) <

0 the film is acoustically unstable and the dewetting wavelength
is calculated:

λac(d) =
√

−8π2σ/P ′
ac(d). (42)

(I) For a free-standing film the acoustic pressure PI(d) grows

with d monotonically towards a plateau P∞, grey curve in
figure 4:

lim
d→∞ PI(d) = P∞ ≈ 6.8kBT/d3

1 , d1 = huf/2kBT .

(43)
Acoustic waves alone cannot destabilize this film, since
P ′

I (d) > 0 for all d .

(II) If one surface of the liquid film is free and the other rigid
the acoustic pressure PII(d) grows rapidly up to a maximum at
d = dII ≈ 0.2d1. Then it monotonically decreases towards the
same plateau P∞, black curve in figure 4. For d > dII this film
is acoustically unstable with the dewetting wavelength, solid
black curve in figures 5 and 6:

λII(d) = 12d2 · f (d) · (πσ/2kBT )1/2,

f (d) ≈ 1.3, d > d1. (44)

If the temperature is high enough, the d-dependent acoustic
forces are comparable to the van der Waals forces:

λII(d) ≈ λvdW(d), if A ≈ 1.3kBT . (45)

(III) Liquid film with one free surface on a liquid substrate. The

dispersion curves ωIII(k‖) (solid coloured curves in figure 2) lie
between the dispersion curves ωII(k‖) and ωI(k‖):

ωIIn(k‖) < ωIIIn(k‖) < ωIn(k‖), n = 1, 2, . . .

ωI0(k‖) = ufk‖,
(46)

for ω/k‖ � us. There are confined sound waves in the film
only if us > uf.

The pressure PIII(d) grows up to a maximum at d =
dIII(U, R) depending on U = us/uf and R = ρs/ρf. dIII grows
for lighter substrates (see table 1). For d > dIII, PIII(d)

approaches the plateau

lim
d→∞

PIII(d) = W 3 P∞, W 2 = 1 − u2
f /u2

s . (47)

5



J. Phys.: Condens. Matter 20 (2008) 455213 R Hotz

Figure 5. The dewetting wavelength due to confined sound waves in
a liquid film with one surface free versus film thickness d . (II) The
other surface is rigid, solid black curve. (III) The film is deposited on
a liquid substrate, solid coloured curves. uf = 2.7 km s−1, us =
8.4 km s−1, ρf = 1.2 g cm−3, ρs = 2.3 g cm−3 · F , F = 10
(magenta), F = 1 (green), F = 0.3 (brown) and F = 0.1 (blue).

Figure 4 shows PIII(d) for a fixed U = 3.14 and different R as
solid coloured curves. With decreasing R the course of PIII(d)

becomes more similar to that of PI(d), which is stable, and
for increasing R to that of PII(d), which is unstable. Only for
d > dIII can one calculate λIII(d), solid coloured curves in
figure 5. In a very small interval behind dIII, λIII(d) grows
faster than linearly with d . After that λIII(d) approaches a
linear course L III(U, R) · d . This yields an approximation of
the acoustic pressure:

PIII(d) ≈ P∞W 3 + 8π2σ/(L2
IIId), d > dIII. (48)

Table 1 lists examples of the coefficient L III(U, R): for fixed
U = us/uf = 3.14, L III(U, R) grows with R, if R > 0.395.
For U = 1.57, L III(U, R) grows more rapidly with R. Here
one finds an example of the same coefficient L III for different
situations (i.e. U = 3.14 and 1.53).

(IV) Liquid film with one free surface on a solid substrate
There are sound waves really confined in the film if

uf < ω/k‖ < usT (surface acoustic waves—SAWs). For
usT < ω/k‖ < usL the acoustic waves are leaky: they are not
completely confined in the liquid layer and lose energy into the
substrate. In this paper we omit the leaky waves.

The dispersion curves ωIV(k‖) (dotted curves in figure 2)
lie between successive dispersion curves ωII(k‖):

ωIIn(k‖) < ωIIIn(k‖) � ωIVn(k‖) < ωII(n+1)(k‖),
n = 1, 2, 3, . . . (49)

They start at ω/k‖ = usT, the transverse sound velocity of
the substrate. They intersect the dispersion curves ωIn on the
straight line ω/k‖ = usT · √

x :

(x/2 − 1)4 = (1 − x)(1 − x · u2
sT/u2

sL). (50)

Figure 6. The dewetting wavelength due to confined sound waves in
a liquid film with one surface free versus film thickness d . (II) The
other surface is rigid, solid black curve. (IV) The film is deposited on
a solid substrate, dashed coloured curves. uf = 2.7 km s−1,
usT = 5.8 km s−1, usL = 8.4 km s−1, ρf = 1.2 g cm−3,
ρs = 2.3 g cm−3 · F , F = 10 (magenta), F = 1 (green),
F = 0.3 (brown) and F = 0.1 (blue).

Additionally there exists a dispersion curve ωIV0(k‖), which
starts at the origin and ends when it intersects ωI0(k‖), where
k⊥ = 0. The zero dispersion curve is the shorter the smaller
R = ρs/ρf. For R � 0.02 it can be neglected. As in
the previous cases we sum up the pressure contributions of
the allowed states. The dispersion curves n = 1, 2, 3, . . .

yield a pressure with a maximum at d = dIV and the plateau
W 3

sT P∞. The corresponding wavelength approaches a linear
course (L IV · d). From the n = 0 dispersion curve the
calculation yields a pressure (≈a/d3) and a wavelength (∼d2).
The sum of the contributions of all dispersion curves n =
0, 1, 2, . . . , yields the pressure (const + a/d3 + b/d) with the
wavelength

λIV(d) = d
√

8π2σ/(3a/d2 + b) < d
√

8π2σ/b = L IV · d.

(51)
Figure 4 shows PIV(d) for a fixed usT/uf = 2.17 and different
R = ρs/ρf as dashed coloured curves. For growing d , PIV(d)

approaches the plateau:

lim
d→∞

PIV(d) = W 3
sT P∞, W 2

sT = 1 − u2
sT/u2

f . (52)

The associated wavelengths λIV(d) are plotted as dashed
curves in figure 6. They approach a linear course in d .

4. Summary

Pac is the pressure of the thermally excited confined acoustic
waves on the surfaces of a thin liquid film (d, uf, ρf). For
different boundary conditions we derived the related dispersion
curves, which describe all allowed states. Summing up
the contributions of the confined states we calculated Pac

numerically for some characteristic cases. Generally Pac(d)

cannot be described in a simple power law expression such as,
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for example, the van der Waals pressure. But in the limiting
cases the results are simple.

(I) For the free-standing film the pressure PI(d) monotoni-
cally grows with d up to a plateau P∞ that is strongly
dependent on the temperature. Thus the acoustic waves
alone cannot destabilize the free-standing film.

(II) For the film with one free and one rigid boundary
condition PII(d) grows rapidly up to a maximum at
d = dII and then descends monotonically for growing
d towards the same plateau P∞ as in case (I). Thus for
d > dII the acoustic pressure can destabilize the film. The
related dewetting wavelength grows nearly as d2.

(III) For the liquid film on a liquid substrate PIII(d) grows to a
maximum at d = dIII and then reaches a plateau W 3 P∞,
with W 2 = 1 − u2

f /u2
s . Only for d > dIII could PIII(d)

destabilize the film. dIII grows for lighter substrates and
the course of PIII(d) is more similar to the course of PI(d),
which is stable. For heavier substrates the course of PIII(d)

is more similar to the course of PII(d), which is unstable.
(IV) We assumed a Newtonian liquid film with vanishing shear

modulus μ on a solid substrate. To fulfil the boundary
conditions one cannot permit slip. We considered only
completely confined sound waves (usT > ω/k‖ > uf) and
omitted leaky waves (usL > ω/k‖ > usT). The pressure
reaches a plateau W 3

sT P∞. For a liquid film on a substrate
(liquid or solid) the dewetting wavelength approaches a
linear course in d . It shows an additional term ∼ 1/d in
the acoustic pressure.

This is the first calculation of the acoustic pressure
including boundary conditions. Until now we have only treated
the case of flat layers and isotropic liquids with μ = 0.
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